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Abstract: Molecular genetic markers represent one of the most powerful tools for the analysis of genomes and enable the 

association of heritable traits with underlying genomic variation. Molecular marker technology has developed rapidly over 

the last decade and two forms of sequence based marker, Simple Sequence Repeats (SSRs), also known as microsatellites, 

and Single Nucleotide Polymorphisms (SNPs) now predominate applications in modern genetic analysis. The reducing 

cost of DNA sequencing has led to the availability of large sequence data sets derived from whole genome sequencing and 

large scale Expressed Sequence Tag (EST) discovery that enable the mining of SSRs and SNPs, which may then be ap-

plied to diversity analysis, genetic trait mapping, association studies, and marker assisted selection. These markers are in-

expensive, require minimal labour to produce and can frequently be associated with annotated genes. Here we review 

automated methods for the discovery of SSRs and SNPs and provide an overview of the diverse applications of these 

markers.  
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1. INTRODUCTION 

 Recent advances in molecular biology provide novel 
tools for addressing evolutionary, ecological and taxonomic 
research questions. Variation in DNA sequence can be ob-
served with a level of accuracy and throughput that was pre-
viously impossible. The bulk of variation at the nucleotide 
level is often not visible at the phenotypic level. This DNA 
variation is frequently exploited in molecular genetic marker 
systems, and the application of molecular markers to ad-
vance research and commercial activities is now well estab-
lished [1]. DNA based markers have many advantages over 
phenotypic markers in that they are highly heritable, rela-
tively easy to assay, and are not affected by the environment. 
In modern genetic analysis, two sequence based marker sys-
tems, Single Nucleotide Polymorphisms (SNPs) and Simple 
Sequence Repeats (SSRs), now predominate.  

1.1. Single Nucleotide Polymorphisms (SNPs) 

 The most abundant source of genetic polymorphism are 
SNPs, representing a single base change between two indi-
viduals at a defined location. There are three different cate-
gories of SNPs: transitions (C/T or G/A), transversions (C/G, 
A/T, C/A, or T/G) and small insertions/deletions (indels). 
SNPs at any particular site could in principle be bi-, tri- or 
tetra-allelic, however tri- and tetra-allelic SNPs are rare, and 
in practice SNPs are generally biallelic [2]. This disadvan-
tage, when compared with multiallelic markers such as  
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SSRs, is compensated by the relative abundance of SNPs, 
which can provide a high density of markers near a locus of 
interest. SNPs are evolutionarily stable, not changing signifi-
cantly from generation to generation. This low mutation rate 
makes SNPs excellent markers for studying complex genetic 
traits and as a tool for understanding genome evolution [3]. 
SNPs are direct markers as the exact nature of the allelic 
variants is provided by the sequence information. This se-
quence variation can have a major impact on how the organ-
ism develops and responds to the environment.  

 SNPs are now the dominant marker used in biomedical 
applications due to the availability of the human genome 
sequence and knowledge of allelic variation derived from the 
HapMap project [4]. The ability to screen large numbers of 
individuals for a range of SNP variants enables the predic-
tion of susceptibility to a wide range of diseases and opens 
the door to the use of personalised medicine based on the 
patients genotype. SNPs are becoming increasingly used in 
animal breeding, with particular success being derived from 
the bovine HapMap project [5]. It is expected that in crop 
genetics, SNPs will co-exist with other marker systems for 
several years [1, 6]. However, with the development of new 
technologies to increase throughput and reduce the cost of 
SNP development, along with further genome sequencing, 
the use of SNPs will become more widespread.  

1.2. Simple Sequence Repeats (SSRs) 

 SSRs, also known as microsatellites, are stretches of 
DNA sequence consisting of short tandem repeats of mono-, 
di-, tri-, tetra-, penta- and hexa-nucleotides [7]. SSRs are 
widely distributed throughout genomes and have been found 
in all prokaryotic and eukaryotic genomes analysed to date 
[8, 9]. SSR perfect repeats are without interruptions, imper-
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fect repeats are interrupted by non-repeat nucleotides and 
compound repeats are cases where two or more SSRs are 
found adjacent to one another. There may also be combina-
tions of these, for example imperfect compound repeats [10]. 
SSRs are powerful genetic markers, due to their genetic co-
dominance, abundance, dispersal throughout the genome, 
multi-allelic variation, high reproducibility and high level of 
polymorphism. This high level of polymorphism is due to 
mutation affecting the number of repeat units. SSRs provide 
a number of advantages over other molecular markers, 
namely that multiple SSR alleles may be detected at a single 
locus using a simple PCR based screen, very small quantities 
of DNA are required for screening, and analysis is amenable 
to automated allele detection and sizing [11]. SSRs demon-
strate a high degree of transferability between species, as 
PCR primers designed to an SSR within one species fre-
quently amplify a corresponding locus in related species, 
enabling comparative genetic and genomic analysis. 

 Studies of the potential biological function and evolu-
tionary relevance of SSRs is leading to a greater understand-
ing of genomes and genomics [12]. SSRs were initially con-
sidered to be evolutionally neutral [13], however more recent 
evidence suggests they may play an important role in ge-
nome evolution [14] and provide hotspots of recombination. 
Functional roles have been attributed to some SSRs. They 
are thought to be involved in gene expression, regulation and 
function [15, 16], and have been found to bind nuclear pro-
teins and function as transcriptional activating elements [17]. 
There is now evidence to suggest that SSRs in non-coding 
regions are also of functional significance [18]. 

2. MARKER APPLICATIONS 

 During the past two decades, several molecular marker 
technologies have been developed and applied for genome 
analysis, predominantly assessing the differences between 
individuals within a species and for the association of ge-
nomic regions with heritable traits. However, due to the rela-
tively high cost associated with the development of molecu-
lar markers, these methods have only been applied to a lim-
ited number of species, predominantly in developed coun-
tries. Even in these situations, the application of molecular 
markers has tended to focus on a small number of traits or 
genomic regions. The development of association mapping 
methods demonstrates the requirement to be able to identify 
and screen large numbers of markers, rapidly and at low 
cost. The development of bioinformatics systems that im-
prove marker identification with reducing cost will therefore 
broaden the uptake of markers to include more diverse spe-
cies and a greater variety of traits. The SNP and SSR mark-
ers which can be rapidly and cheaply identified through bio-
informatics have many uses in genetics, such as the detection 
of alleles associated with disease, genome mapping, associa-
tion studies, genetic diversity, paternity assessment, foren-
sics and inferences of population history [19, 20].  

2.1. Genetic Diversity 

 Genetic diversity is the sequence variation within spe-
cies. Information on genetic diversity and relationships 
among and between individuals, populations, plant varieties, 
animal breeds and species is of importance to plant and ani-
mal breeders for the improvement of crop plants and animal 
breeds, for conservation biology and for studying the evolu-

tionary ecology of populations. Genetic diversity studies can 
identify alleles that might affect the ability of the organism 
to survive in its existing habitat, or might enable it to survive 
in more diverse habitats. This knowledge is valuable for 
germplasm conservation, individual, population, variety or 
breed identification.  

 SSR molecular markers are frequently used to assess 
genetic variation within and between populations [21] and 
there have been many studies describing genetic diversity in 
a wide range of species. SNPs within specific genes or ge-
nomic regions have also been used to infer phylogenetic re-
lationships between species. However, the advent of next 
generation sequencing technology enables genetic diversity 
assessment on a genome wide scale. As the cost of genome 
sequencing continues to decrease the genomes of individuals 
will be sequenced rather than genotyped [22]. Whole ge-
nome studies of genetic diversity allow unprecedented in-
sight into the forces contributing to genetic diversity in a 
species. 

2.2. Genetic Mapping 

 Molecular markers have revolutionised genome mapping 
over the last two decades, offering the potential for generat-
ing very high density genetic maps that can be used to de-
velop haplotypes for genes or regions of interest, and com-
plete genome mapping is now becoming a reality. Genetic 
mapping places molecular genetic markers in linkage groups 
based on their co-segregation in a population. The genetic 
map predicts the linear arrangement of markers on a chromo-
some and maps are prepared by analysing populations de-
rived from crosses of genetically diverse parents, and esti-
mating the recombination frequency between genetic loci. 
Many types of markers can be used for map construction, 
with population size and marker density being important for 
map resolution. Genetic maps provide an insight into the 
genome organisation of an organism and may be used to 
study synteny between related species and rearrangement 
across taxa. The use of common molecular genetic markers 
across related species permits the comparison of linkage 
maps. This allows the translation of information between 
model species with sequenced genomes and non-model spe-
cies [23]. Furthermore, the integration of molecular marker 
data with genomics, proteomics and phenomics data allows 
researchers to link sequenced genome data with observed 
traits, bridging the genome to phenome divide. In recent ad-
vances, genome wide sets of SNP markers have been devel-
oped in model plant and animal species, such as dog [24], rat 
[25] and Arabidopsis thaliana [26].  

2.3. Association Studies  

 One aim of genetic studies is to associate the genotype 
with the heritable phenotype [27]. The quantitative pattern of 
inheritance of complex traits arises from the segregation of 
the alleles of multiple genes which are often modified by 
environmental factors. The systematic mapping of genes 
contributing to a continuously variable trait was not feasible 
before the use of molecular markers. The production of ge-
netic linkage maps first enabled quantitative trait loci (QTL) 
to be mapped. Association mapping is a further statistical 
method to identify genetic loci associated with phenotypic 
trait variation. Association mapping shares much in common 
with QTL mapping. QTL mapping generally involves the 
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use of structured populations and relatively distant markers 
can segregate with the QTL, providing a wide genetic region 
within which the gene is located. The use of unstructured 
populations in association mapping means that they repre-
sent many more recombination events and are often many 
generations from a common ancestor, providing the potential 
of a greater resolution for a set population size. 

2.4. Marker Assisted Selection 

 While unethical in human populations, genetic selection 
has contributed to increased productivity of crops and im-
provements in animal breeds. However, many of these ge-
netic gains have been through traditional breeding methods 
involving phenotypic selection of traits or from pedigree and 
heterosis data. With the development of molecular tech-
niques, marker assisted selection (MAS) is now used to en-
hance traditional breeding programs to improve both crops 
and animals, and modern plant and animal breeding is de-
pendent on molecular markers for the rapid and precise 
analysis of germplasm and trait mapping [28]. Molecular 
markers are complementary tools to traditional selection, 
used to select parental genotypes in breeding programs, 
eliminate linkage drag in back-crossing and select for traits 
that are difficult to measure using phenotypic assays. They 
can increase our understanding of phenotypic characteristics 
and their genetic association, which may modify the breed-
ing strategy. MAS allows the breeder to achieve early selec-
tion of a trait in a breeding program, and it is particularly 
useful when the trait is under complex genetic control, or 
when phenotypic trials are unreliable or expensive. By in-
creasing favourable allele frequency early in the breeding 
process, a larger number of small populations can be carried 
forward in the breeding process, each of which has been pre-
screened to remove or reduce the frequency of unfavourable 
alleles.  

2.5. Diagnostics 

 The association of molecular markers with human dis-
ease has led to the identification of genes and genetic muta-
tions responsible for several heritable diseases such as sickle 
cell anaemia [29], cystic fibrosis [30], Huntington’s disease 
[31] and phenylketonuria [32]. Research in this field has 
advanced rapidly since the sequencing of the human genome 
and the establishment of the human HapMap project which 
aims to catalogue a range of human genetic diversity [4]. 
Commercial companies now offer human genotyping serv-
ices which predict genetic predisposition to disease and pro-
vide an insight into genetic ancestry [33]; 
(https://www.23andme.com/). Marker technology has also 

advanced the field of forensics with subsequent benefits to 
society through the crime prevention. 

3. COMPUTATIONAL MOLECULAR MARKER DIS-
COVERY METHODS 

 As with most molecular markers, the factor limiting the 
implementation of SNPs and SSRs is the initial cost of their 
development. Previously, the discovery of SSR loci was lim-
ited to the construction of genomic DNA libraries enriched 
for SSR sequences, followed by DNA sequencing of the 
clones and analysis of the sequence for the presence of SSRs 
[34]. This process is both time consuming and expensive due 
to the large amount of specific sequencing required. SNP 
discovery involves finding differences between two se-
quences. Traditionally this has been performed through PCR 
amplification of genes/genomic regions of interest from mul-
tiple individuals selected to represent diversity in the species 
or population of interest, followed by either direct sequenc-
ing of these amplicons, or the more expensive method of 
cloning and sequencing. Sequences are then aligned and any 
polymorphisms identified. This approach is frequently pro-
hibitively expensive and time consuming for the identifica-
tion of the large number of SNPs required for most applica-
tions such as genetic mapping and association studies.  

 In silico methods of SNP and SSR discovery are now 
being adopted, providing cheap and efficient methods for 
marker identification. Large quantities of sequence data have 
been generated internationally through Expressed Sequence 
Tag (EST) or genome sequencing projects and these provide 
a valuable resource for the mining of molecular markers. 
Sequence data generation is undergoing a revolution with the 
release of ‘next generation’ technologies (Table 1). These 
technologies offer the potential to rapidly re-sequence either 
whole eukaryotic genomes or representative samples of ge-
nomes. While the large volume of next generation sequenc-
ing data are generally produced at the expense of sequence 
quality, the over sampling of genome data enables the differ-
entiation between true SNPs and sequence error. In one of 
the first examples of this application, a total of 36,000 maize 
SNPs were identified in data from a single run of the Roche 
454 GS20 DNA sequencer [35]. More recently, the complete 
genome of DNA structure pioneer, James D. Watson was re-
sequenced using Roche 454 technology, while an anony-
mous African male of the Yoruba people of Ibadan, who 
participated in the international HapMap project was com-
pletely sequenced using Applied Biosystems SOLiD se-
quencing technology. Whole genome sequencing is the most 
robust method to identify the great variety of genetic diver-
sity in a population and gain a greater understanding of the 

Table 1. Comparison of Current DNA Sequencing Technologies 

 

Sequencing Machine ABI 3730 Roche GSFLX Illumina Solexa AB SOLiD Helicos HeliScope Pacific Bioscience 

Launched 2000 2007 2006 2007 2008 2009 

Read length (bp) 800-1100 250-400 35-50 25-35 28 long 

Reads per run 96 400 K 60 M 85 M 85 M ? 

Throughput per run 0.1 MB 100 MB 3 GB 3 GB 2 GB ? 

Cost per GB >$2500k  $84k $6k $5.8k ? ? 
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relationship between the inherited genome and observed 
heritable traits. The continued rapid advances in genome 
sequencing technology will lead to whole genome sequenc-
ing becoming the standard method for genetic polymorphism 
discovery. For a comprehensive list of the genome sequenc-
ing initiatives, see http://www.ncbi.nlm.nih.gov/genomes/-
static/gpstat.html. To date, there are over 1700 prokaryote 
genome sequencing projects and over 340 eukaryote genome 
sequencing projects. These numbers are set to increase rap-
idly with the expansion of next generation sequencing tech-
nology and this data will be used for rapid, inexpensive mo-
lecular marker discovery. 

3.1. In Silico SNP Discovery 

 The dramatic increase in the number of DNA sequences 
submitted to databases makes the electronic mining of SNPs 
possible without the need for sequencing. The identification 
of sequence polymorphisms in assembled sequence data is 
relatively simple; the challenge of in silico SNP discovery is 
not SNP identification, but rather the ability to distinguish 
real polymorphisms from the abundant sequencing errors. 
Current Sanger sequencing produces errors as frequent as 
one error every one hundred base pairs, whilst some of the 
next generation technologies are even less accurate with er-
rors as frequent as one in every 25 bp. Several sources of 
sequence error need to be addressed during in silico SNP 
identification. The most abundant error in Sanger sequencing 
is incorrect base calling, due to the requirement to obtain the 
greatest sequence length. These errors are usually identified 
by the relatively low quality scores for these nucleotides. 
Further errors are due to the intrinsically high error rate of 
the reverse transcription and PCR processes used for the 
generation of cDNA libraries and these errors are not re-
flected by poor sequence quality scores. A number of meth-
ods used to identify SNPs in aligned sequence data rely on 
sequence trace file analysis to filter out sequence errors by 

their dubious trace quality [36-38]. The major drawback to 
this approach is that the sequence trace files required are 
rarely available for large sequence datasets collated from a 
variety of sources. In cases where trace files are unavailable, 
two complementary approaches have been adopted to differ-
entiate between sequence errors and true polymorphisms: (1) 
assessing redundancy of the polymorphism in an alignment, 
and (2) assessing co-segregation of SNPs to define a haplo-
type. These methods are employed in the following applica-
tions for in silico SNP identification (Table 2).  

3.1.1. SNP Discovery from Trace Files 

PolyBayes 

 PolyBayes [38] uses a Bayesian-statistical model to find 
differences within assembled sequences based on the depth 
of coverage, the base quality values and the expected rate of 
polymorphic sites in the region. Base quality values can be 
obtained by running the sequence trace files through the 
PHRED base-calling program [39, 40], and repeats can be 
removed from sequences using RepeatMasker [41]. The out-
put can be viewed through the Consed alignment viewer 
[42]. Recent studies using PolyBayes include SNP discovery 
for white spruce [43] and bird species [44]. 

PolyPhred 

 PolyPhred [45] compares sequence trace files from dif-
ferent individuals to identify heterozygous sites. The se-
quence trace files are used to identify SNPs and can identify 
positions in the sequence where double peaks occur that are 
half the height of the adjacent peaks within a window. The 
quality of a SNP is assigned based on the spacing between 
peaks; the relative size of called and uncalled peaks; and the 
dip between peaks. PolyPhred only analyses nucleotides that 
have a minimum quality as determined by Phred [39, 40]. 
PolyPhred is integrated with three other programs: phred, 
phrap and consed. It runs on Unix, and provides output that 

Table 2. Applications for in Silico SNP and SSR Discovery 

 

Tool URL Reference 

PolyBayes http://bioinformatics.bc.edu/marthlab/PolyBayes [38] 

PolyPhred http://droog.mbt.washington.edu/ [45] 

SNPDetector http://lpg.nci.nih.gov/ [48] 

NovoSNP http://www.molgen.ua.ac.be/bioinfo/novosnp/ [50] 

AutoSNP http://acpfg.imb.uq.edu.au [53] 

MISA http://pgrc.ipk-gatersleben.de/misa/ [63] 

SSRIT http://www.gramene.org/db/searches/ssrtool [66] 

RepeatFinder http://www.cbcb.umd.edu/software/RepeatFinder/ [67] 

SPUTNIK http://espressosoftware.com/pages/sputnik.jsp  

http://cbi.labri.fr/outils/Pise/sputnik.html) 

Unpublished 

TROLL http://wsmartins.net/webtroll/troll.html [71] 

TRF http://tandem.bu.edu/trf/trf.html [72] 

SSRPrimer http://hornbill.cspp.latrobe.edu.au 

http://acpfg.imb.uq.edu.au 

[75, 76] 

SSRPoly http://acpfg.imb.uq.edu.au/ssrpoly.php Unpublished 
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can be viewed in Consed [42]. Recent examples of the use of 
PolyPhred include studies in cattle [46] and in humans that 
have had liver transplants [47]. 

SNPDetector 

 SNPDetector [48] uses Phred [39, 40] to call bases and 
determine quality scores from trace files, and then aligns 
reads to a reference sequence using a Smith-Waterman algo-
rithm. SNPs are identified where there is a sequence differ-
ence and the flanking sequence is of high quality. SNPDetec-
tor has been used to find SNPs in 454 data [35] and has been 
included within a comprehensive SNP discovery pipeline 
[49]. 

NovoSNP 

 NovoSNP [50] requires both trace files and a reference 
sequence as input. The trace files are base-called using Phred 
[39, 40] and quality clipped, then aligned to a reference se-
quence using BLAST [51]. A SNP confidence score is calcu-
lated for each predicted SNP. NovoSNP is written in Tcl 
with a graphical user interface written in Tk and runs on 
Linux and Windows. NovoSNP has been used in a study of 
genotype-phenotype correlation for human disease [52]. 

3.1.2. SNP Discovery Using Redundancy Approaches 

AutoSNP 

 The autoSNP method [53] assembles sequences using 
CAP3 [54] with the option of pre-clustering with either 
d2cluster [55] or TGICL [56]. Redundancy is the principle 
means of differentiating between sequence errors and real 
SNPs. While this approach ignores potential SNPs that are 
poorly represented in the sequence data, it offers the advan-
tage that trace files are not required and sequences may be 
used directly from GenBank. AutoSNP is therefore applica-
ble to any species for which sequence data is available. A co-
segregation score is calculated based on whether multiple 
SNPs define a haplotype, and this is used as a second, inde-
pendent measure of confidence. AutoSNP is written in Perl 
and is run from the Linux command line with a FASTA file 
of sequences as input. The output is presented as linked 
HTML with the index page presenting a summary of the 
results. AutoSNP has been applied to several species includ-
ing maize [57], peach [58] and cattle [59]. 

SNPServer 

 SNPServer [60] is a real time implementation of the 
autoSNP method, accessed via a web server. A single 
FASTA sequence is pasted into the interface and similar 
sequences are retrieved from a nucleotide sequence database 
using BLAST [51]. The input sequence and matching se-
quences are assembled using CAP3 and SNPs are discovered 
using the autoSNP method [53]. The results are presented as 
HTML. Alternatively, a list of FASTA sequences may be 
input for assembly or a preassembled ACE format file may 
be analysed. SNPServer has been used in studies including 
sea anemone [61] and human [62]. 

3.2. SSR Discovery 

 The availability of large quantities of sequence data 
makes it economical and efficient to use computational tools 
to mine this for SSRs. Flanking DNA sequence may then be 
used to design suitable forward and reverse PCR primers to 

assay the SSR loci. Furthermore, when SSRs are derived 
from ESTs, they become gene specific and represent func-
tional molecular markers. These features make EST-SSRs 
highly valuable markers for the construction and comparison 
of genetic maps and the association of markers with heritable 
traits. Several computational tools are available for the iden-
tification of SSRs in sequence data as well as for the design 
of PCR amplification primers. Due to redundancy in EST 
sequence data, and with datasets often being derived from 
several distinct individuals, it is now also possible to predict 
the polymorphism of SSRs in silico. A selection of SSR dis-
covery tools are described below (Table 2).  

MISA 

 The MIcroSAtellite (MISA) tool (http://pgrc.ipk-
gatersleben.de/misa/) identifies perfect, compound and inter-
rupted SSRs. It requires a set of sequences as FASTA and a 
parameter file that defines unit size and minimum repeat 
number of each SSR. The output includes a file containing 
the table of repeats found, and a summary file. MISA can 
also design PCR amplification primers on either side of the 
SSR. The tool is written in Perl and is therefore platform 
independent, but it requires an installation of Primer3 for the 
primer search [63]. MISA has been applied for SSR identifi-
cation in moss [64] and coffee [65]. 

SSRIT 

 The tool SSRIT (Simple Sequence Repeat Identification 
Tool) (http://www.gramene.org/db/searches/ssrtool) uses 
Perl regular expressions to find perfect SSR repeats within a 
sequence. It can detect repeats between 2 and 10 bases in 
length, but eliminates mononucleotide repeats. The output is 
a file of SSRs in tabular format. A web based version is 
available that will take a single sequence, and a stand alone 
version is also available for download. SSRIT has been ap-
plied to rice [66].  

RepeatFinder 

 RepeatFinder [67] (http://www.cbcb.umd.edu/software/-
RepeatFinder/) finds SSRs in four steps: (1) finds all exact 
repeats using RepeatMatch or REPuter [68]; (2) merges re-
peats together into repeat classes, for example repeats that 
overlap; (3) merges all of the other repeats that match those 
already merged, into the same classes and (4) matches all 
repeats and classes against each other in a non-exact manner 
using BLAST. The input is a genome or set of sequences, 
and the output is a file containing the repeat classes and 
number of merged repeats found in each class. RepeatFinder 
finds perfect, imperfect and compound repeats, and was not 
designed specifically to find SSRs so can find repeats of any 
length. It runs on Unix or Linux and has been used to iden-
tify SSRs in peanut [69]. 

Sputnik 

 Sputnik is a commonly used SSR finder as it is fast, effi-
cient and simple to use. It uses a recursive algorithm to 
search for repeats with length between 2 and 5, and it finds 
perfect, compound and imperfect repeats. It requires se-
quences in FASTA format and uses a scoring system to call 
each SSR. The output is a file of SSRs in tabular format. 
Unix, Linux and windows versions of sputnik are available 
from http://espressosoftware.com/pages/sputnik.jsp and 
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http://cbi.labri.fr/outils/Pise/sputnik.html (PISE enabled ver-
sion). Sputnik has been applied for SSR identification in 
many species including Arabidopsis and barley [70] 

TROLL 

 The SSR identification tool Tandem Repeat Occurrence 
Locator (TROLL) [71] (http://wsmartins.net/webtroll/troll.-
html) draws a keyword tree and matches it with a technique 
adapted from bibliographic searches, based on the Aho-
Corasick algorithm. It has drawbacks in that it doesn’t han-
dle very large sequences and cannot process large batches of 
sequences as the tree takes up large amounts of memory.  

Tandem Repeats Finder (TRF) 

 Tandem Repeats Finder (TRF) [72] (http://tandem.bu.-
edu/trf/trf.html) can find very large SSR repeats, up to a 
length of 2000 bp. It uses a set of statistical tests for report-
ing SSRs, which are based on four distributions of the pat-
tern length, the matching probability, the indel probability 
and the tuple size. TRF finds perfect, imperfect and com-
pound SSRs, and is available for Linux. TRF has been used 
for SSR identification in Chinese shrimp [73] and cowpea 
[74].  

3.2.1. Compound Methods 

 The following computational SSR finders combine pre-
viously created methods to produce extended output. 

SSRPrimer 

 SSRPrimer [75, 76] combines Sputnik and the PCR 
primer design software Primer3 to find SSRs and associated 
amplification primers. The scripts take multiple sequences in 
FASTA format as input and produce lists of SSRs and asso-
ciated PCR primers in tabular format. This web-based tool is 
also available as a stand alone version for very large datasets. 
SSRPrimer has been applied to a wide range of species in-
cluding Brassica [77-80], citrus [81], mint [82], strawberry 
[83], Eragrostis curvula [84], Sclerotinia [85] and shrimp 
[86]. 

SSRPoly 

 SSRPoly (http://acpfg.imb.uq.edu.au/ssrpoly.php) is cur-
rently the only tool which is capable of identifying polymor-
phic SSRs from DNA sequence data. The input is a file of 
FASTA format sequences. SSRPoly includes a set of Perl 

scripts and MySQL tables that can be implemented on 
UNIX, Linux and Windows platforms.  

4. DATA STORAGE 

 Large-scale discovery projects are uncovering vast quan-
tities of marker data. As the data size increases, the storage 
and logical organisation of the information becomes an im-
portant challenge. Marker databases vary between central-
ised repositories that integrate a variety of data for several 
species, to small specialised databases designed for very 
specific purposes. The larger repositories tend to lack de-
tailed analytic tools, while the smaller systems may include 
further species specific data integration. dbSNP is becoming 
the default repository for SNP data, and there are a wide va-
riety of additional marker databases specific to particular 
species. The most commonly used marker databases are de-
tailed below (Table 3). 

dbSNP 

 The Single Nucleotide Polymorphism database, dbSNP 
(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.c
gi), was developed by NCBI to provide a public-domain re-
pository for simple genetic polymorphisms [87, 88]. Al-
though dbSNP includes data on markers such as SSRs and 
insertion/deletion polymorphisms, SNPs are the primary data 
type, comprising 97.8% of the database [87]. Table (4) pre-
sents a summary of species represented. Access is provided 
via a web interface and there are several ways to query the 
database. Users can search using a known SNP id or use 
BLAST to compare a known sequence with sequences in the 
database. Alternatively, dbSNP can be queried using Entrez 
or Locuslink. dbSNP currently hosts over 52 million refSNP 
clusters for 44 organisms. Of these clusters, around 16 mil-
lion (30%) have been validated. 

HapMap 

 The HapMap Consortium collates and catalogues infor-
mation on human genetic polymorphisms [89]. There are 
two primary methods to access the data: GBrowse [90] and 
Bio-Mart [91], and both methods are tailored to specific 
types of users. GBrowse is a genome browser and is a com-
ponent of the GMOD project (http://www.gmod.org). Using 
the GBrowse feature of HapMap, users may browse a region 
of the genome or search with a specific SNP id (Fig. 1). 

Table 3. Details of Commonly Used Marker Storage Databases 

 

Database URL Reference 

dbSNP www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi [87, 88] 

HapMap www.hapmap.org/ [89] 

IBISS www.livestockgenomics.csiro.au/ibiss/ [90] 

MPD SNP Tools www.jax.org/phenome [91] 

Gramene www.gramene.org/ [92-94] 

GrainGenes www.graingenes.org/ [95, 96] 

TAIR www.arabidopsis.org/ [97-99] 

MaizeGDB www.maizegdb.org/ [100] 

AutoSNPdb http://acpfg.imb.uq.edu.au/ Unpublished 
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Clicking the SNP location in the GBrowse viewer opens an 
information page, providing full details of the SNP locus. 
The HapMap project maintains over 3.1 million character-
ised human SNPs which have been genotyped in a geo-
graphically diverse selection of 270 individuals [92].  

IBISS 

 The Interactive Bovine in silico SNP Database (IBISS) 
has been created by the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) of Australia. It is a col-
lection of 523 448 Bovine SNPs identified from 324,031 
Bovine ESTs using a custom analysis pipeline [93]. The da-

Table 4. List of Species Represented in dbSNP that have over 500 Validated SNPs 

 

Organism dbSNP Build Genome Build Number of Submissions Number of RefSNP Clusters (# validated) 

Homo sapiens 129 36.3 50529995 18,045,964 (6,587,300) 

Mus musculus 128 37.1 18645060 14,380,528 (6,447,366) 

Gallus gallus 128 2.1 3641959 3,293,383 (3,280,002) 

Oryza sativa 128 4.1 5872081 5,418,373 (22,057) 

Canis familiaris 126 2.1 3526996 3,301,322 (217,525) 

Bos taurus 128 3.1 2233086 2,223,033 (14,371) 

Pan troglodytes 127 0.0 1544900 1,543,217 (112,654) 

Danio rerio 128 2.1 700855 662,322 (3,091) 

Rattus norvegicus 126 4.1 47711 43,628 (1,605) 

Macaca mulatta 128 1.1 789 780 (519) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Examples of HapMap searches: (a). Chromosomal region search, showing the population of genotyped SNPs as a custom GBrowse 

track (bottom). (b). SNP id search, showing the specific genome location for the desired SNP. 
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tabase can be searched by keyword, accession id or by 
BLAST comparison with an entry sequence. Users can also 
browse for markers using a linked genome browser. 

MPD SNP Tools 

 The Jackson Laboratory’s Mouse Phenome Database 
(MPD) (www.jax.org/phenome) aims to facilitate the re-
search of human health issues through mouse models. As 
well as a wealth of trait information on mice, MPD also 
hosts a collection of over 10 million mouse SNPs (http://-
www.jax.org/phenome/snp.html).  

Gramene 

 Gramene is an online comparative mapping database for 
rice and related grass species [94-96]. Gramene contains 
information on cereal genomic and EST sequences, genetic 
maps, relationships between maps, details of rice mutants, 
and molecular genetic markers. The database uses the se-
quenced rice genome as its reference and annotates this ge-
nome with various data types. As well as the genome 
browser, Gramene also incorporates a version of the com-
parative map viewer, CMap. This allows users to view ge-
netic maps and comparative genetic mapping information 
and provides a link between markers on genetic maps and 
the sequenced genome information.  

GrainGenes 

 GrainGenes integrates genetic data for Triticeae and 
Avena [97, 98]. The database includes genetic markers, map 
locations, alleles and key references for barley, wheat, rye, 
oat and related wild species. Graingenes also provides access 
to genetic data using CMap. 

TAIR 

 The Arabidopsis Information Resource (TAIR) (http://-
www.arabidopsis.org/) provides an extensive web-based 
resource for the model plant Arabidopsis thaliana [99-101]. 
Data includes gene, marker, genetic mapping, protein se-
quence, gene expression and community data within a rela-
tional database. 

MaizeGDB 

 MaizeGDB [102] combines information from the original 
MaizeDB and ZmDB [103, 104] repositories with sequence 
data from PlantGDB [105-107]. The system maintains in-
formation on maize genomic and gene sequences, genetic 
markers, literature references, as well as contact information 
for the maize research community.  

AutoSNPdb 

 AutoSNPdb implements the autoSNP pipeline within a 
relational database to enable the efficient mining of the iden-
tified SNP and indel polymorphisms and the detailed inter-
rogation of the data. A web-based application enables 
searching and visualisation of the data, including the display 
of sequence alignments and SNPs (Fig. 2). All sequences are 
annotated by comparison with GenBank and UniRef90, as 
well as through comparison with reference genome se-
quences. The system allows researchers to query the results 
of SNP analysis to identify SNPs between specific groups of 
individuals or within genes of predicted function. 
AutoSNPdb is currently available for barley, rice and Bras-
sica species and is available at: http://acpfg.imb.uq.edu.au/. 

5. DATA VISUALISATION 

 The effective visualisation of large amounts of data is as 
critical an issue as its storage. Increasing volumes of data 
permit researchers to draw, with increasing confidence, 
comparative links across the genome to phenome divide. 
Visualisation tools, combined with the ability to dynamically 
categorise data, allow the identification trends and relation-
ships at varying tiers of resolution. Current visualisation 
techniques for markers broadly fall into two categories: 
graphical map viewers and genome browsers. Map viewers 
display markers as a representation of a genetic linkage map. 
Genome browsers generally host a greater quantity of anno-
tation data and may be linked to related genetic map viewers. 

5.1. Graphical Map Viewers 

 The NCBI map viewer (http://www.ncbi.nih.gov/map-
view) uses sets of graphically-aligned maps to visualise mo-
lecular genetic markers, genome assemblies and other anno-

 

 

 

 

 

 

 

 

 

 

Fig. (2). AutoSNPdb showing the overview of the SNPs in this assembly and the aligned sequences with the SNPs highlighted.  
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tations [108]. It allows users to show multiple levels of anno-
tation in tandem for a given chromosomal segment (Fig. 3). 
As well as allowing users to view the map graphically, NCBI 
also provides a function to download raw mapping data in a 
tabular format.  

 CMap is a tool for viewing and comparing genetic and 
physical maps and has been applied successfully for the 
comparison of maps within and between related species [94]. 
CMap was originally developed for the Gramene project 
(http://www.gramene.org/CMap/) and has since been applied 
for the comparison of genetic maps of Brassica [109], sheep, 
cattle, pig, wallaby [110], honeybee, grasses [94, 111], pea-
nut [112], Rosaceae [113] and legumes [114]. As an exten-
sion to CMap; CMap3D allows researchers to compare mul-
tiple genetic maps in three-dimensional space (Fig. 4). 
CMap3D accesses data from CMap databases, with specifi-
cations defined by the Generic Model Organism Database 
(GMOD) (http://www.gmod.org/CMap).  

5.2. Genome Browsers 

 Several software packages have been developed for the 
visualisation of genome information. EnsEMBL was devel-
oped by the European Bioinformatics Institute (EBI) and the 
Sanger Centre to visualise data from the Human Genome 
Project [115, 116]. It has since been extended to a variety of 
eukaryotic organisms, including plants [94, 117]. In contrast, 
GBrowse was designed to be a generic genome browser [90] 
which has been applied to the genomes of a wide variety of 
species including C. Elegans, Drosophila, Honeybee, Cattle 
and Human. The UCSC Genome browser is another popular 
browser which has been developed principally for vertebrate 
genomes [118]. 

 EnsEMBL, GBrowse and the UCSC Genome Browser 
display annotations as customisable ‘tracks’ along selected 
regions of genome sequence. One advantage of displaying 
data in this format is that relationships between markers, 
predicted gene structures, trait annotations and other forms 

 

 

 

 

 

 

 

 

Fig. (3). The NCBI map viewer displaying the overall view for Arabidopsis thaliana chromosome 2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The CMap3D map viewer displaying associations between three linkage groups and mapped traits. 
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of biological annotation can be viewed in a clear and intui-
tive manner.  

CONCLUDING REMARKS 

 Genetic markers have played a major role in our under-
standing of heritable traits. In the current genomics era, mo-
lecular genetic markers are bridging the divide between these 
traits and increasingly available genome sequence informa-
tion. Conversely, the increasing quantity of genome se-
quence information is a valuable source of new genetic 
markers. Bioinformatics tools have been developed to mine 
sequence data for markers and present these in a biologist 
friendly manner. With the expansion of next generation se-
quencing technologies, there will be a rapid growth in asso-
ciated marker information and the use of these markers for 
diverse applications from crop breeding to predicting human 
disease risks, impacting both food production and human 
health for future generations. 
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